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Motivation

Entanglement entropy is enough for bipartite pure state.

@ What about bipartite mixed state?

@ Any trace of multipartite entanglement!

If yes! How does it change in non-inertial frame?
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Reflected Entropy

[Dutta, Faulkner : 19]
@ Purification: A bipartite quantum system A U B in a mixed state pap is prepared by
embedding the system A U B in a larger tripartite system A U B UC.

@ Reflected entropy Sr(A : B) of a bipartite system AB involves the canonical purification of
the given mixed state pap by doubling its Hilbert space to define a pure state

I\VPAB) pax e Such that pap = Trax g |VPAB) (VPABI.
PaB |\/PaB >aa+BB

A[B] =
Purify
Pap = Traspe(|\/Pap > </Pagl)

@ Reflected entropy is defined as
Sr(A: B) = S(AA").

@ The reflected entropy satisfy the bound,
min{254,25} > Sr(A: B) > I(A: B).
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Markov gap

@ The Markov gap is defined as [Hayden, Parrikar and Sorce: 2021]
h(A:B)=Sgr(A:B)—I(A: B).

@ Following the lower bound of reflected entropy, h(A, B) > 0.
@ It is a measure of tripartite entanglement. [Akers and Rath: 2019, Zou et al: 2021]

@ The Markov gap can be written as conditional mutual information [Dutta and Faulkner: 2019]
h(A:B)=1(A:Bx| B)
where, I(A: Bx | B) =I(A: BBx) —I(A: B)
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The setup

@ First case: we consider two non-inertial observers Alice and Bob sharing an initially entangled
bipartite fermionic field mode described by the Bell state

IB)ap = al0), 1005 +VI—a? 1), 1)y, ac(0,1)
@ Second case: we consider a tripartite entangled fermionic field mode described by the GHZ
state
|IGHZ) yge = a]0) 4 [0) 5 [0) o +V1—a? 1), 1) I1)e, «€(0,1)

@ Third case: we consider a tripartite entangled fermionic field mode described by the W state

(W)age =all)410)510)c +al0),[0)g|1)c +V1—2a2]0),[1)5]0)s, a€ (0, %)

@ For all the cases, Bob moves with uniform acceleration
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Rindler diagram

@ Assume the observer Bob is accelerating in (1 + 1)-d Minkowski spacetime

ds® = —dt® + dz?

@ Rindler coordinates (7, &) are appropriate to describe an observer moving with uniform accel-
eration in Minkowski spacetime.

@ Two sets of Rindler coordinates are required as,
-1 . -1 .
t=a ‘e sinhar, z=a ‘e coshar, RegionlI,

1 _ag

t=—a "e teat

sinhar, z = —a "e"~coshar, Region II,

where a is Bob’s proper acceleration.

@ The metric in Rindler coordinates is

ds? = ¢ (—dr® + dg?)
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Rindler spacetime diagram. Source: Alsing at., el 2006

@ ¢ = const are hyperbolas and 7 = const are lines through the origin.

@ Region I and II are causally disconnected.
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@ Minkowski states for Bob is related to the Rindler states through the Bogoliubov transforma-

tions
[0) g =cosr|0)5]0)5 +sinr|1) ;1) 5,

Mg =11)5pl0)s.

where r = tan™* exp(f%) is the acceleration parameter and w is the mode frequency.

@ Note that we have adopted the single mode approximation, which means Bob’s detector is
sensitive to a single mode frequency.
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Reflected entropy

@ Bell state:
|BYaps = acosr|000) y g5 + asinr|011) 455 + V1 — a?|110) 455,

@ GHZ state:
|GHZ) yppc = acosr|0000) ypgc + asinr|0110) sp5c + V1 — a?[1101) 455,

@ W state:
W) aspc = acosr|1000) y g + asinr|1110) s g + acosr|0001) s g5

+ asinr|0111) 4 g 50 + V1 — 2a2(0100) 4550

@ Performing canonical purification we obtain papa«p« and therefore paax.
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Reflected entropy
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(a) Bell state: Sg(A: B)
(Blue), Sr(A : B) (orange),
and Sr(B : B) (green) Here,

we have taken o = W'

(b) GHZ state: Sg(A : B)

(Blue), Sr(A : B) (orange),

and Sr(B : B) (green). Here,
1

we have taken oo = 7

Figure 1: Sp vs r.

@ Reflected entropy is degraded with increasing acceleration

@ Reflected entropy is finite at infinite acceleration

® Sp(A:B)=Sgr(A:B)atr=m/4
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(c) W-state: Sr(A : B)
(Blue), Sr(A : B) (orange),
and Sr(B : B) (green) Here,

we have taken a = ﬁ'
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Reflected entropy bound
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(a) Bell state, a = % (b) GHZ state, a = % (c) W-state, a = %
20
i ez es oa os os o7
(d) Bell state, r = & (e) GHZ state, r = § (f) W-state, r = &

Figure 2: Sp(A : B) (blue), min{254,2Sp} (orange), I(A : B) (red) are plotted wrt r and a.
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Markov Gap
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(a) Bell state: h(A: B) (b) GHZ state: h(A : B) (c) W-state: h(A : B) (blue),
(blue), h(A : B) (orange) and (blue), h(A : B) (orange) and h(A: B) (orange) and
h(B : B) (green). Here, h(B : B) (green). Here, h(B : B) (green). Here,
_ 1 _ 1 _ 1
a= s a= . o=

Figure 3: h vs r.

@ Tripartite entanglement in present in Bell state.
@ Tripartite entanglement increase in Bell and GHZ state
@ Tripartite entanglement decreases in W state

@ h(A:B)=h(A:B)atr=mx/4
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Problems with reflected entropy

@ Monotonicity: If §, is a measure of correlations, then it must satisfy the inequality,
0,(A:BC)>6,(A:B)
i.e, it must be monotonically decreasing under partial trace.

@ Very recently it has been argued, for any ¢ € (0,2) there exists a density operator papc on
Ha@Hp @ Ho = C2 ®C3 ®C? for which the &-th Rényi reflected entropy satisfies, [Hayden,
Lemm, Sorce: 2023]

5%,(A: BC) < S5(A: B)
@ The argument can be generalized for Ha @ Hp @ He = C*Tl @ ¢! @ C?
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Problems with reflected entropy

@ Consider the state,
1

PABC = 5 +2(m —1)b

[a|000>(000| + a|110)(110| + Z (aanO}(n00| + a|n10)(n10|)

+ b]0m0) (0m0| + b|1m1><1m1|)]
where, n,m > 2.

° S’%(A : BC) — Sg(A : B) shows,

-0.01
-0.02

-0.03

-0.04

n,m = 2, a = 200, b = 10

@ These results heavily depend on the values of a and b.
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Summary

@ We have computed Reflected entropy for bipartite and tripartite fermionic field modes de-
scribed by Bell, GHZ and W state respectively.

@ Reflected entropy decreases between Alice and Bob due to Unruh effect, and in the infinite
acceleration limit it reaches a non-vanishing final value.

@ We have showed that Markov gap which was introduced as a tripartite entanglement measure
changes monotonically with acceleration.

@ We have checked the monotonicity of Renyi reflected entropy for 3-qubit or 4-qubit state where
it shows to be monotonic. For other dimensions (qudit-qudit-qubit) there are some exceptions.
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Future directions

@ check the same for bosonic degrees of freedoms in non intertial frame

@ black hole background analysis

@ understand the non-monotonicity of reflected entropy and Markov gap

@ consider other states for better understanding of multipartite entanglement

@ Others !!!
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Thank You!
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