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Motivation

Entanglement entropy is enough for bipartite pure state.

What about bipartite mixed state?

Any trace of multipartite entanglement!

If yes! How does it change in non-inertial frame?
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Reflected Entropy

[Dutta,Faulkner : 19]

Purification: A bipartite quantum system A ∪ B in a mixed state ρAB is prepared by
embedding the system A ∪ B in a larger tripartite system A ∪ B ∪ C.

Reflected entropy SR(A : B) of a bipartite system AB involves the canonical purification of
the given mixed state ρAB by doubling its Hilbert space to define a pure state
|√ρAB⟩

ABA∗B∗ such that ρAB = TrA∗B∗ |√ρAB⟩ ⟨√ρAB |.

Reflected entropy is defined as
SR(A : B) = S(AA

∗
).

The reflected entropy satisfy the bound,

min{2SA, 2SB} ≥ SR(A : B) ≥ I(A : B).
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Markov gap

The Markov gap is defined as [Hayden, Parrikar and Sorce: 2021]

h(A : B) = SR(A : B) − I(A : B).

Following the lower bound of reflected entropy, h(A,B) ≥ 0.

It is a measure of tripartite entanglement. [Akers and Rath: 2019, Zou et al: 2021]

The Markov gap can be written as conditional mutual information [Dutta and Faulkner: 2019]

h(A : B) = I (A : B∗ | B)

where, I(A : B∗ | B) = I(A : BB∗) − I(A : B)
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The setup

First case: we consider two non-inertial observers Alice and Bob sharing an initially entangled
bipartite fermionic field mode described by the Bell state

|B⟩AB = α |0⟩A |0⟩B +
√

1 − α2 |1⟩A |1⟩B , α ∈ (0, 1)

Second case: we consider a tripartite entangled fermionic field mode described by the GHZ
state

|GHZ⟩ABC = α |0⟩A |0⟩B |0⟩C +
√

1 − α2 |1⟩A |1⟩B |1⟩C , α ∈ (0, 1)

Third case: we consider a tripartite entangled fermionic field mode described by the W state

|W ⟩ABC = α |1⟩A |0⟩B |0⟩C + α |0⟩A |0⟩B |1⟩C +
√

1 − 2α2 |0⟩A |1⟩B |0⟩C , α ∈ (0,
1
√
2
)

For all the cases, Bob moves with uniform acceleration
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Rindler diagram

Assume the observer Bob is accelerating in (1 + 1)-d Minkowski spacetime

ds
2
= −dt

2
+ dz

2

Rindler coordinates (τ, ξ) are appropriate to describe an observer moving with uniform accel-
eration in Minkowski spacetime.

Two sets of Rindler coordinates are required as,

t = a
−1

e
aξ

sinh aτ, z = a
−1

e
aξ

cosh aτ, Region I,

t = −a
−1

e
aξ

sinh aτ, z = −a
−1

e
aξ

cosh aτ, Region II,

where a is Bob’s proper acceleration.

The metric in Rindler coordinates is

ds
2
= e

2aξ
(
−dτ

2
+ dξ

2
)
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Rindler spacetime diagram. Source: Alsing at., el 2006

ξ = const are hyperbolas and τ = const are lines through the origin.

Region I and II are causally disconnected.
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Minkowski states for Bob is related to the Rindler states through the Bogoliubov transforma-
tions

|0⟩B = cos r |0⟩B |0⟩B̄ + sin r |1⟩B |1⟩B̄ ,

|1⟩B = |1⟩B |0⟩B̄ .

where r = tan−1 exp
(
−πω

a

)
is the acceleration parameter and ω is the mode frequency.

Note that we have adopted the single mode approximation, which means Bob’s detector is
sensitive to a single mode frequency.
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Reflected entropy

Bell state:

|B⟩ABB̄ = α cos r|000⟩ABB̄ + α sin r|011⟩ABB̄ +
√

1 − α2|110⟩ABB̄ ,

GHZ state:

|GHZ⟩ABB̄C = α cos r|0000⟩ABB̄C + α sin r|0110⟩ABB̄C +
√

1 − α2|1101⟩ABB̄C ,

W state:

|W ⟩ABB̄C = α cos r|1000⟩ABB̄C + α sin r|1110⟩ABB̄C + α cos r|0001⟩ABB̄C

+ α sin r|0111⟩ABB̄C +
√

1 − 2α2|0100⟩ABB̄C .

Performing canonical purification we obtain ρABA∗B∗ and therefore ρAA∗.
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Reflected entropy
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(a) Bell state: SR(A : B)
(Blue), SR(A : B̄) (orange),
and SR(B : B̄) (green). Here,
we have taken α = 1√
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(b) GHZ state: SR(A : B)
(Blue), SR(A : B̄) (orange),
and SR(B : B̄) (green). Here,
we have taken α = 1√

2
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(c) W-state: SR(A : B)
(Blue), SR(A : B̄) (orange),
and SR(B : B̄) (green). Here,
we have taken α = 1√
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Figure 1: SR vs r.

Reflected entropy is degraded with increasing acceleration

Reflected entropy is finite at infinite acceleration

SR(A : B) = SR(A : B̄) at r = π/4
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Reflected entropy bound
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(f) W-state, r = π
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Figure 2: SR(A : B) (blue), min{2SA, 2SB} (orange), I(A : B) (red) are plotted wrt r and α.
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Markov Gap
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(a) Bell state: h(A : B)
(blue), h(A : B̄) (orange) and
h(B : B̄) (green). Here,
α = 1√
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(b) GHZ state: h(A : B)
(blue), h(A : B̄) (orange) and
h(B : B̄) (green). Here,
α = 1√
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(c) W-state: h(A : B) (blue),
h(A : B̄) (orange) and
h(B : B̄) (green). Here,
α = 1√

3
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Figure 3: h vs r.

Tripartite entanglement in present in Bell state.

Tripartite entanglement increase in Bell and GHZ state

Tripartite entanglement decreases in W state

h(A : B) = h(A : B̄) at r = π/4
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Problems with reflected entropy

Monotonicity: If δρ is a measure of correlations, then it must satisfy the inequality,

δρ(A : BC) ≥ δρ(A : B)

i.e, it must be monotonically decreasing under partial trace.

Very recently it has been argued, for any ξ ∈ (0, 2) there exists a density operator ρABC on
HA ⊗HB ⊗HC = C3 ⊗ C3 ⊗ C2 for which the ξ-th Rényi reflected entropy satisfies, [Hayden,
Lemm, Sorce: 2023]

S
ξ
R(A : BC) ≤ S

ξ
R(A : B)

The argument can be generalized for HA ⊗ HB ⊗ HC = Cn+1 ⊗ Cm+1 ⊗ C2
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Problems with reflected entropy

Consider the state,

ρABC =
1

2na + 2(m − 1)b

[
a|000⟩⟨000| + a|110⟩⟨110| +

∑
m,n

(
a|n00⟩⟨n00| + a|n10⟩⟨n10|)

+ b|0m0⟩⟨0m0| + b|1m1⟩⟨1m1|
)]

where, n,m ≥ 2.

Sξ
R(A : BC) − Sξ

R(A : B) shows,

0.5 1.0 1.5 2.0 2.5 3.0
ξ

-0.04

-0.03

-0.02

-0.01

n,m = 2, a = 200, b = 10

These results heavily depend on the values of a and b.
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Summary

We have computed Reflected entropy for bipartite and tripartite fermionic field modes de-
scribed by Bell, GHZ and W state respectively.

Reflected entropy decreases between Alice and Bob due to Unruh effect, and in the infinite
acceleration limit it reaches a non-vanishing final value.

We have showed that Markov gap which was introduced as a tripartite entanglement measure
changes monotonically with acceleration.

We have checked the monotonicity of Renyi reflected entropy for 3-qubit or 4-qubit state where
it shows to be monotonic. For other dimensions (qudit-qudit-qubit) there are some exceptions.
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Future directions

check the same for bosonic degrees of freedoms in non intertial frame

black hole background analysis

understand the non-monotonicity of reflected entropy and Markov gap

consider other states for better understanding of multipartite entanglement

Others !!!
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Thank You!
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